II B. TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, FEB - 2022 COMPLEX VARIABLES AND STATISTICAL METHODS (Common to CE, EEE, ME and ECE)

Time : 3 Hours

Max. Marks : 60

Note : Answer **ONE** question from each unit $(5 \times 12 = 60 \text{ Marks})$

UNIT-I

- 1. a) **Show** that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin [6M] although Cauchy-Riemann equations are satisfied at that point.
 - b) Show that $e^{2x}(x \cos 2y y \sin 2y)$ is harmonic. Find the conjugate [6M] harmonic function of it.

(OR)

- 2. a) **Identify** analytic function f(z) = u(x, y) + iv(x, y) if [6M] $u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - e^{y} - e^{-y}} \text{ and } f(\frac{\pi}{2}) = 0.$
 - b) **Evaluate** $\int_{c} \frac{e^{z}}{(z^{2} + \pi^{2})} dz$ where C is |z|=4 using Cauchy's integral [6M] theorem.

UNIT-II

3. a) **Identify** the Laurent's expansion for
$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$
 for $|z| > 3$. [6M]

b) **Identify** the residue of $\frac{1-e^{2z}}{z^4}$ at these singular points which lie [6M] inside the circle |z|=2.

4. a) Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 in the region $1 < |z| < 2$. [6M]

b) **Identify** the Laurent's expansion of $\frac{7z-2}{(z+1)(z-2)}$ in the region [6M] 1 < z+1 < 3.

UNIT-III

- 5. a) In a bolt factory there are 3 machines A, B, C manufacturing 30%, [6M] 35% and 35% of the total output respectively. Of their outputs 5%, 4% and 2% respectively are defective bolts. A bolt is chosen at random from the factories production and is found defective.
 Predict the probability that bolt was manufactured by machine A or machine C.
 - b) **Determine** the binomial distribution for which mean =2 (variance) [6M] and mean + variance =3 then find $P(x \le 3)$.

(OR)

- 6. a) The income of a group of 10000 persons was found to be normally [6M] distributed with mean root is 750 per month and S.D. of rupees 50.
 Show that of this group about 95% had income exceeding rupees 668 and only 5% had income exceeding rupees 832.
 - b) **Make use** of the following data and fit a Poisson distribution to the [6M] following data give the no of yeast cells per square for 400 squares.

0 0	5		1	1					T		
No of cells per	0	1	2	3	4	5	6	7	8	9	10
Square											
No of squares.	103	143	98	42	8	4	2	0	0	0	0

UNIT-IV

- 7. a) A manufacturer claimed that at least 95% of the equipment which he [6M] supplied to a factory conformed to specifications. An examination of a sample of 200 pieces of equipment's revealed that 108 were faulty.
 Test this claim at a significant level of (i)0.05, (ii)0.10.
 - b) A manufacture claims that only 4% of his products are defective. A [6M] random sample of 500 were taken among which 100 were defective.
 Test the hypothesis at 0.05 level.

(OR)

- 8. a) The mean weight of 45 male students is 70 kgs with a S.D. of 10 kgs . [6M] Mean weight of another set of 80 students is 68 kgs with S.D. of 15 kgs . Test the hypothesis the weight of I set of male students is greater than the 2nd set of male students.
 - b) It is claimed that a random sample of 49 tyres has a mean life of [6M] 15200 km. This sample was drawn from a population whose mean is 15150 kms and a S.D. of 1200 km . Test the significance at 0.05 level.

UNIT-V

9. a) **Apply** method of least squares, find a straight line that best fits the [6M] following data points.

x	0	1	2	3	4
у	1	1.8	3.3	4.5	6.3
					1 0

b) **Calculate** the coefficient of correlation from the following data; given [6M] ranks of 10 students in English and Mathematics

Rank in English	3	1	5	4	2	6	8	10	9	7
Rank in Mathematics	2	4	3	1	5	10	7	9	8	6

(OR)

- 10. a) In a partially destroyed laboratory record, only the lines of regression [6M] of y on z and x on y are available as 4x-5y + 33=0 and 20x-9y = 107 respectively. **Calculate** $\overline{x, y}$ and the coefficient of correlation between x and y.
 - b) **Make use** of the following data and fit a second degree parabola to [6M] the following data

y 1.1 1.3 1.6 2 2.7 3.4 4.	x	1	1.5	2	2.5	3	3.5	4
	у	1.1	1.3	1.6	2	2.7	3.4	4.1

* * * * *