II B. TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, FEB - 2022

 COMPLEX VARIABLES AND STATISTICAL METHODS (Common to CE, EEE, ME and ECE)Time : $\mathbf{3}$ Hours
Max. Marks : 60
Note : Answer ONE question from each unit ($\mathbf{5 \times 1 2 = 6 0}$ Marks)

UNIT-I

1. a) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin [6M] although Cauchy-Riemann equations are satisfied at that point.
b) Show that $e^{2 x}(x \cos 2 y-y \sin 2 y)$ is harmonic. Find the conjugate [6M] harmonic function of $i t$.

(OR)

2. a) Identify analytic function $f(z)=u(x, y)+i v(x, y)$ if
$u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}$ and $f\left(\frac{\pi}{2}\right)=0$.
b) Evaluate $\int_{c} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)} \mathrm{d} z$ where C is $|z|=4$ using Cauchy's integral theorem.

UNIT-II

3. a) Identify the Laurent's expansion for $\mathrm{f}(\mathrm{z})=\frac{z^{2}-1}{(z+2)(z+3)}$ for $|z|>3$.
b) Identify the residue of $\frac{1-e^{2 z}}{z^{4}}$ at these singular points which lie inside the circle $|z|=2$.
(OR)
4. a) Expand $f(z)=\frac{1}{(z-1)(z-2]}$ in the region $1<|z|<2$.
b) Identify the Laurent's expansion of $\frac{7 z-2}{(z+1)(z-2)}$ in the region $1<z+1<3$.

UNIT-III

5. a) In a bolt factory there are 3 machines A, B, C manufacturing 30%, 35% and 35% of the total output respectively. Of their outputs 5%, 4% and 2% respectively are defective bolts. A bolt is chosen at random from the factories production and is found defective. Predict the probability that bolt was manufactured by machine A or machine C.
b) Determine the binomial distribution for which mean $=2$ (variance) and mean + variance $=3$ then find $\mathrm{P}(\mathrm{x} \leq 3)$.
6. a) The income of a group of 10000 persons was found to be normally distributed with mean root is 750 per month and S.D. of rupees 50. Show that of this group about 95% had income exceeding rupees 668 and only 5% had income exceeding rupees 832.
b) Make use of the following data and fit a Poisson distribution to the
[6M] [following data give the no of yeast cells per square for 400 squares.

No of cells per Square	0	1	2	3	4	5	6	7	8	9	10
No of squares.	103	143	98	42	8	4	2	0	0	0	0

UNIT-IV

7. a) A manufacturer claimed that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of a sample of 200 pieces of equipment's revealed that 108 were faulty. Test this claim at a significant level of (i)0.05, (ii)0.10.
b) A manufacture claims that only 4% of his products are defective. A random sample of 500 were taken among which 100 were defective. Test the hypothesis at 0.05 level.
(OR)
8. a) The mean weight of 45 male students is 70 kgs with a S.D. of 10 kgs . Mean weight of another set of 80 students is 68 kgs with S.D. of 15 kgs . Test the hypothesis the weight of I set of male students is greater than the $2^{\text {nd }}$ set of male students.
b) It is claimed that a random sample of 49 tyres has a mean life of 15200 km . This sample was drawn from a population whose mean is 15150 kms and a S.D. of 1200 km . Test the significance at 0.05 level.

UNIT-V

9. a) Apply method of least squares, find a straight line that best fits the following data points.

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

b) Calculate the coefficient of correlation from the following data; given ranks of 10 students in English and Mathematics

10. a) In a partially destroyed laboratory record, only the lines of regression of y on z and x on y are available as $4 x-5 y+33=0$ and $20 x-9 y=107$ respectively. Calculate \bar{x}, \bar{y} and the coefficient of correlation between x and y.
b) Make use of the following data and fit a second degree parabola to the following data

x	1	1.5	2	2.5	3	3.5	4
y	1.1	1.3	1.6	2	2.7	3.4	4.1

Page 2 of 2

